Let $0 < \theta < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval
$\left( {3,\infty } \right)$
$\left( {\frac{3}{2},2} \right]$
$\left( {2,3} \right]$
$\left( {1,\frac{3}{2}} \right]$
The equation of the tangents to the hyperbola $3{x^2} - 4{y^2} = 12$ which cuts equal intercepts from the axes, are
Eccentricity of the curve ${x^2} - {y^2} = {a^2}$ is
The equation of the normal to the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ at $( - 4,\;0)$ is
The chord $ PQ $ of the rectangular hyperbola $xy = a^2$ meets the axis of $x$ at $A ; C $ is the mid point of $ PQ\ \& 'O' $ is the origin. Then the $ \Delta ACO$ is :
If the straight line $x\cos \alpha + y\sin \alpha = p$ be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, then