Let $0 < \theta < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval
$\left( {3,\infty } \right)$
$\left( {\frac{3}{2},2} \right]$
$\left( {2,3} \right]$
$\left( {1,\frac{3}{2}} \right]$
If $(4, 0)$ and $(-4, 0)$ be the vertices and $(6, 0)$ and $(-6, 0)$ be the foci of a hyperbola, then its eccentricity is
If the centre, vertex and focus of a hyperbola be $(0, 0), (4, 0)$ and $(6, 0)$ respectively, then the equation of the hyperbola is
Eccentricity of the hyperbola conjugate to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1$ is
If the line $y=m x+c$ is a common tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and the circle $x^{2}+y^{2}=36,$ then which one of the following is true?
At the point of intersection of the rectangular hyperbola $ xy = c^2 $ and the parabola $y^2 = 4ax$ tangents to the rectangular hyperbola and the parabola make an angle $ \theta $ and $ \phi $ respectively with the axis of $X$, then